Nonlinear complex open systems show great diversity in the process of self-organization, and that diversity increases as complexity increases. The measurement of complexity and the origins of the diversity of such complex systems are the focus of interdisciplinary studies extending across a wide range of scientific disciplines that include applied mathematics, physics, chemistry, biology, psychology, ecology, sociology, and economics. Previous investigations have concentrated either on complexity or on diversity, but not both. This volume makes clear the relation between complexity and diversity with examples drawn from various disciplines. Compiles here are presentations from the Complexity and Diversity workshop held in Fugue, Japan, in August 1996. The contributions are the results of research in mathematical systems, physical systems, living systems, and social systems, and are contained in the four corresponding sections of the book.
344天前